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High-level phylogenies are very common in evolutionary analyses, although they are often treated as incomplete data. Here,

we provide statistical tools to analyze what we name “clade data,” which are the ages of clades together with their numbers

of species. We develop a general approach for the statistical modeling of variation in speciation and extinction rates, including

temporal variation, unknown variation, and linear and nonlinear modeling. We show how this approach can be generalized to a

wide range of situations, including testing the effects of life-history traits and environmental variables on diversification rates.

We report the results of an extensive simulation study to assess the performance of some statistical tests presented here as well

as of the estimators of speciation and extinction rates. These latter results suggest the possibility to estimate correctly extinction

rate in the absence of fossils. An example with data on fish is presented.
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The study of the tempo and mode of evolution has experienced

a new wave of interest from evolutionists using new mathe-

matical and statistical tools to analyze molecular phylogenies

(Sanderson and Donoghue 1996; Ricklefs 2007). Following some

initial breakthrough (e.g., Nee et al. 1992, 1994), significant

progress has been achieved in biologically relevant statistical

modeling of diversification, such as quantifying temporal varia-

tion in diversification (Paradis 2011; Hallinan 2012) or assessing

the effects of biological traits on speciation and extinction rates

(Maddison et al. 2007; FitzJohn et al. 2009; FitzJohn 2010). Re-

cent advances have also been accomplished in integrating molec-

ular and fossil data (e.g., Morlon et al. 2011; Didier et al. 2012).

Most of these recent statistical developments have focused

on analyzing complete phylogenies. Incomplete phylogenies are

often treated as a separate case to take missing data into account

(Pybus et al. 2002; FitzJohn et al. 2009; Stadler 2011). The most

common form of such data is a phylogeny resolved at a high level

accompanied by the number of species associated to each tip of

the tree. On the other hand, the ages of clades together with the

numbers of species (named here “clade data”) have been a ne-

glected source of data in the analysis of diversification. Magallón

and Sanderson (2001) provided some methods for the analysis

of such data and applied them to angiosperms. They particularly

developed various estimators of the (net) rate of diversification of

a clade giving its age and number of species.

The relative lack of interest toward clade data may come

from the fact that, for a given clade, its complete phylogeny con-

tains more information than the pair of values “age + number

of species.” However, for a collection of clades, such data are a

valuable source of information for several reasons. First, clades

defined by higher-level taxa (e.g., families, orders) are clearly

identified for almost all groups of living beings and their numbers

of species are in many cases already known. Second, phyloge-

netic relationships among higher-level taxa have been much more
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studied than within them, so it is more straightforward to date

the age of a clade rather than the divergences among its species.

Third, the fossil record is generally more informative on the origin

of higher-level taxa compared to species or other low-level taxa.

Fourth, it is easier to examine the impact of the species concept

on the definition of clade data rather than on a phylogeny because

in the former the species concept will mostly affect the number of

species, whereas in the latter it will be often hard to infer different

phylogenies under those distinct species definitions. Clade data

have also some disadvantages: the inherent lack of temporal reso-

lution within each clade makes it impossible to study the variation

in diversification within them.

In the present article, we extend the approach presented by

Magallón and Sanderson (2001) and present statistical tools for

the inference of diversification patterns and processes with clade

data. Our approach assumes that each clade, instead of having

its own speciation and extinction rates, comes from a “statistical

population of clades” so that maximum likelihood inference is

straightforward. With this rationale, we show how to make in-

ference on variation in diversification parameters among clades

using different modeling tools, including testing the effects of

life-history traits and environmental variables and the case where

variation is a priori unknown. We also present the results of a

simulation study to assess the statistical performance of several

tests and estimators presented in this article, and finally, we apply

our approach on a dataset of fish.

Statistical Modeling Approach
Throughout this article, we assume that diversification proceeds

with speciation (λ) and extinction (μ) rates, which are the prob-

abilities that a species splits into two daughter species or goes

extinct during a very short time. We denote as Xt the number of

species in a clade of age t where this may be either the stem age

of the clade (divergence time of the clade from its sister-clade)

or its crown age (time to the most recent common ancestor of the

species belonging to the clade). Specifically, using equation (8)

from Kendall (1948), we can write the probability that Xt takes a

specific integer value x :

Pr(Xt = x |θ, X0 = 1) = ηt (1 − ηt )
x−1 x ≥ 1, (1)

where θ is a vector of parameters specifying how speciation and

extinction rates vary through time and ηt is a function of these

parameters. The conditioning on X0 = 1 emphasizes that in this

article we consider stem groups. For the case of crown groups

(X0 = 2), the probabilities must be summed on all possible com-

binations. In most applications, stem groups are considered be-

cause the origin of a group is inferred from its relationships with

its sister group. On the one hand, deriving the crown age of a

group requires to estimate the age of the most recent common an-

cestor of its species, which is usually more complicated because

it requires to sample all species in the clade. On the other hand,

inferring stem ages requires one species from the clade and one

from its sister-clade.

Various forms exist for these probabilities depending on the

parameterization of θ and whether we wish to condition them on

survival of the lineage until present or not. For instance, if extinc-

tion rate is zero and speciation rate is constant, then ηt = e−λt .

This is the Yule (1924) model. Models with a nonnull extinction

rate are called birth–death models (Kendall 1948).

The point of conditioning on no extinction is important when

analyzing data on actual groups because total extinction of these

groups did not occur. Thus, the probabilities must be modified

accordingly, otherwise this would result in underestimated ex-

tinction rates (Rabosky et al. 2007).

Let us consider for the moment the simple Yule model. The

expected number of species at time t is given by E(Xt ) = eλt .

From this expectation, a simple estimator of λ based on the

method of moments is λ̂ = ln(x)/t (Magallón and Sanderson

2001). When considering a single clade, and in the absence of

more detailed information, it does not seem possible to go further

in the inference. When considering more than one group (e.g.,

the families within an order or a class), researchers usually es-

timate λ separately for each group, then proceed with standard

statistics (e.g., McPeek 2008). This approach assumes that each

clade is characterized by its own speciation rate. On the other

extreme, one may assume that speciation rate is the same in all

groups so that the observed data are independent outcomes of the

same diversification process. Thus, it is possible to use maximum

likelihood inference using equation (1). The likelihood function

is

∏
i

Pr(xi |λ), (2)

where Pr(x |λ) is a simplified notation of equation (1). We may

expect less bias in the estimates from this approach, but also

the possibility to test hypotheses based on fitting alternative

models.

The assumption of equal speciation rates among clades is,

certainly in most cases, unrealistic (Purvis et al. 1995; Paradis

2005; Alfaro et al. 2009). However, because we have several ob-

servations we may model the variation in this parameter with a sta-

tistical modeling approach. We explore several such approaches

below. First, we consider approaches based on deterministic vari-

ation between two or more groups of clades. Second, we con-

sider how temporal variation in speciation and extinction rates

can be modeled and assessed. Third, we develop an approach

handling unknown variation based on mixture modeling, includ-

ing the combination of mixtures with a linear modeling of the
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speciation rate. Finally, we attack the problem of estimating ex-

tinction rates.

VARIATION AMONG CLADES

A simple way to model variation in diversification among clades

is to assume that there are two categories: some clades diversify

with speciation rate λ1 and the others with rate λ2. The data

are made of n1 and n2 clades in each category, respectively. The

likelihood function is

n1∏
i1=1

Pr(xi1 |λ1)
n2∏

i2=1

Pr(xi2 |λ2).

Note that each clade is assigned to a category a priori, although

there is no assumption on whether λ1 is greater, or smaller, than

λ2. The null hypothesis λ1 = λ2 can be tested by fitting this model

and the null model whose likelihood is given by equation (2): the

likelihood ratio test (LRT) comparing these two models follows

a χ2 distribution with df = 1. An alternative is to use the Akaike

information criterion (AIC, Akaike 1973).

The present approach is easily generalized to more than two

categories: let us denote the number of categories as K , then the

likelihood function would become the product of K products:

K∏
j=1

n j∏
i j =1

Pr(xi j |λ j ),

where n j is the number of clades in the j th category. The LRT

comparing this model with the null model of homogeneous diver-

sification follows a χ2 with df = K − 1.

These models assume, mostly for simplicity, that there is no

extinction (μ = 0); however, variation in extinction rate can be

incorporated in a straightforward way. For instance, a model with

two categories diversifying with the same λ but with different

extinction rates has the following likelihood function:

n1∏
Pr(xi1 |λ,μ1)

n2∏
Pr(xi2 |λ,μ2),

which could be compared with the null model with μ > 0 whose

likelihood is:

N∏
Pr(xi |λ,μ),

with N = n1 + n2. This test is related, but not identical, to the

tests of equal diversification using sister-clades where the ages of

clades are not needed (Paradis 2012b).

The Supporting Information provides annotated R code ex-

plaining how to build and fit any model following the present

approach.

LINEAR MODELING

Following the previous section, two extreme models can be de-

fined: the simplest one where all clades diversify at the same

rate, and the most complex one where each clade has its own

parameter(s). This second model will be overparameterized for a

likelihood approach. Nevertheless, it is possible to model variation

in diversification parameters with linear models. For instance, we

may know a priori some variables that are likely to affect the value

of speciation rate (e.g., body size), and a model that relates such

“covariates” to speciation rate may be an appropriate candidate to

model the variation in diversification among clades. We use here

a standard strategy to model variation in a rate with respect to a

covariate z

g(λi ) = βzi + α,

where λi is the speciation rate in clade i , g is a function used to

transform the rate to linearize the relationship, and β and α are

two parameters. Here β controls the effect of z on λ: if β > 0, then

species with large values of z will speciate faster than those with

small values of z (and inversely if β < 0). It is possible to consider

more than one predictor in which case the number of parameters

is equal to the number of predictors plus one. Nonlinear models

can also be considered. Each clade has its own speciation rate

given by (with g−1 being the inverse transformation of g):

λi = g−1(βzi + α), (3)

which is used to calculate the likelihood defined by equation (2):

the likelihood function is then maximized to estimate β and α (see

code in the Supporting Information). A common choice for g is

the logit function, ln(λi/(1 − λi )), so g−1 gives

λi = 1

1 + e−(zi β+α)
,

The null model is defined by fixing β = 0 in which case λ =
1/(1 + e−α) for all clades. The logit function is well suited for

parameters varying between 0 and 1, which is the case for specia-

tion rates considered on geological time scales (million of years).

However, speciation rates may be larger than one on shorter scales.

Other transformations can be used such as the one used below.

It must be noted that the variation among clades as modeled

in the previous section is a special case of linear models where

the membership of a clade to a category is coded with a dis-

crete variable and this variable is entered as a predictor into the

linear model after coding it into binary 0 and 1 variable(s) (see

appendix in Paradis 2005, for details). Therefore, continuous and

categorical predictors can be combined in the linear model.

TEMPORAL VARIATION

Kendall (1948) studied the birth–death model in a very general

way, including the cases where λ and μ vary through time. Thus,
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it is possible to derive the probability density of the distribution

of the xi ’s when diversification changed through time. The like-

lihood can be defined and fit in the same way as above. Such a

temporal model can be compared with the null model of constant

diversification with a χ2 test whose df will be equal to the number

of additional parameters in the first model. As before, temporal

variation may reflect speciation and/or extinction rate(s). The

simplest temporal model has two rates before and after a given

time point in the past, so it has one additional parameter than the

null model. Note that if the time point is unknown, it could be

estimated from the data so there would be two additional param-

eters. However, a wide variety of temporal models can be defined

in ape (Paradis et al. 2004) using the function dbdTime where

the temporal variation is defined by the user with a standard R

function.

UNKNOWN VARIATION

The above models assume that diversification parameters vary in

relation to some known variables, either categorical or continu-

ous. On the other hand, it is possible that these variables are not

observable. Such unknown variation can be modeled with two ap-

proaches depending on whether we assume that the diversification

parameters vary in a discrete or continuous manner.

A mixture of distributions is based on the assumption that

observations come from two or more categories each character-

ized by its own distribution, but the assignment of an observation

to a particular category is unknown (see Flury et al. 1992, for a

biological example). As a simple example, consider a mixture of

two Yule processes, then the likelihood function will be

N∏
i=1

f Pr(xi |λ1) + (1 − f ) Pr(xi |λ2), (4)

where f is the proportion of clades in the first category. This

model has three parameters (λ1, λ2, and f ) and can be compared

with the null model of homogeneous speciation with an LRT

with df = 2. The idea is easily generalized to more than two

mixtures: a mixture with K Yule models would have 2K − 1

parameters. As above, the mixture may involve speciation and/or

extinction rate(s). In contrast to the situation above where clades

were assigned to categories a priori, there is no assignment a

priori. On the other hand, assignment a posteriori is possible by

calculating the relative contributions to the likelihood function.

The idea may even be further generalized to include mix-

tures of linear models. Suppose, we know that one variable, say

body size, has a significant effect on speciation rate, but there is

some other, unknown, variation in this parameter that we want to

model with a mixture. Then, it is possible to calculate the λi ’s

with equation (3) and use them to compute the likelihood with

equation (4). Each category would have its own parameters β and

α, so a model with K categories has 3K − 1 parameters.

The second approach assumes that, in the case of a Yule

model, λ varies continuously across clades following a speci-

fied distribution whose parameters are estimated from the data.

A transformation of λ is useful so that it follows a normal dis-

tribution: g(λ) ∼ N (μλ, σ
2
λ). A useful transformation here is the

complementary log–log transformation: g(λ) = ln(− ln(λ)). As

above, we do not know the value of λ for a given clade, but

this time instead of a discrete sum, we have to do a continuous

integration. The likelihood function is thus:

N∏
i=1

∫ ∞

−∞
fN

(
u|μλ, σ

2
λ

)
Pr(xi |g−1(u))du,

where fN is the density function of the normal distribution. A

graphical representation of the variation in λ is obtained with the

inverse transformation g−1(u) = exp(−eu) with the dentity of u

computed with the normal distribution and the estimates μ̂λ and

σ̂2
λ.

ESTIMATING EXTINCTION RATES

The estimation of extinction rates in the absence of fossil data has

appeared to be a complicated issue (Paradis 2004, 2011; McPeek

2008; Aldous et al. 2011; Morlon et al. 2011; Didier et al. 2012;

Hallinan 2012). To try to tackle this problem, we implemented

a procedure that fits a birth–death model estimating λ and μ

simultaneously. These estimates are denoted as λ̂BD and μ̂BD.

Simulation Study
The present statistical modeling approach offers many possibili-

ties and it would take a large number of simulations to assess the

statistical properties of all of them. Instead, we focus on a few

key questions. What is the statistical power to detect a difference

in diversification between two groups of clades? How powerful

is the test to detect temporal variation in diversification? What is

the statistical power to detect unknown variation in diversification

between two groups of clades using mixtures? Finally, what is the

precision of the λ and μ estimators?

To address these four questions, we ran four sets of sim-

ulations. First, we considered a simple two-category scenario

with n1 and n2 clades simulated with rates λ1 and μ1 and λ2

and μ2, respectively. The times of evolution were drawn from

a uniform distribution: ti ∼ U(10, 20). A phylogeny was sim-

ulated under a birth–death process during a time ti using ape

starting from a single species. The number of species surviving

at time, ti , xi , was extracted and the pairs (xi , ti ) were analyzed

as described above using a Yule model. The LRT testing the null

hypothesis of homogeneous diversification was computed, and

the rejection rate was assessed under different sets of parameter
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values: n1 = n2 = {1, 3, 5, 10, 20}, λ1 = {0.1, 0.15, 0.2}, λ2 =
0.1, μ1 = {0, 0.05}, μ2 = {0, 0.05}.

Second, we performed simulations under three scenarios

with different values of diversification rates before and after

30 time units. We first generated 100 values of t from a uni-

form distribution between 10 and 50. We then simulated clades

with constant, increasing, or decreasing diversification rate. The

number of species was extracted as before, and two models

were fitted: the null Yule model of constant diversification,

and an alternative model assuming different speciation rates be-

fore and after 30 time units (as above, μ = 0 was assumed).

The rejection rates of the LRTs comparing both models were

computed.

Third, a scenario similar to the first one was considered:

the difference is that the simulated clades were not identified to

a particular category so the data were analyzed with a mixture

of Yule models. We used K = 2, n1 = n2 = {10, 20, 50}, and

ti ∼ U(10, 20). Four combinations of speciation and extinction

rates were used as follows: (1) the null hypothesis is true and

there is no extinction: λ1 = λ2 = 0.1, μ1 = μ2 = 0; (2) the null

hypothesis is false and there is no extinction: λ1 = 0.1, λ2 = 0.2,

μ1 = μ2 = 0; (3) the null hypothesis is false but only μ varies:

λ1 = λ2 = 0.2, μ1 = 0,μ2 = 0.1; and (4) same than before with

stronger variation in μ: λ1 = λ2 = 0.2, μ1 = 0, μ2 = 0.15.

Finally, we performed an assessment of the precision of the

estimators of speciation and extinction rates using five combina-

tions of λ and μ: (0.1, 0), (0.1, 0.03), (0.1, 0.06), (0.2, 0.1), and

(0.2, 0.15). Here ti ∼ U(10, 30) and n = 100.

The simulations were replicated 1000 times. Annotated R (R

Development Core Team 2012) code is available in the Supporting

Information with guidelines on how to run these simulations so

that the readers can adapt them to their own problems. Besides,

we did not attempt to compare our method with previous ones

because some scenarios considered here cannot be analyzed by

the latter (e.g., the third scenario does not seem to be tractable

with Magallón and Sanderson’s method).

Application to Fish Data
We used the data from Vega and Wiens (2012) who compiled

the number of species, stem age, and percentage of marine fish

species for 22 orders and superorders and for 97 families. They

also provided a phylogeny for the 22 higher taxa that allowed to

compare our estimates with those obtained from the combined

analysis of phylogeny and species richness data (Paradis 2003).

All data were unmodified from the original publication and are

available at http://dx.doi.org/10.1098/rspb.2012.0075. With this

dataset, we explored the variation in diversification using different

mixtures of Yule and birth–death models. We also tried to assess

Table 1. Rejection rate for the test of equality of diversification

rate between two categories with n1 and n2 (= n1) clades.

n1

λ1 μ1 λ2 μ2 1 3 5 10 20

0.1 0 0.1 0 0.044 0.060 0.066 0.054 0.056
0.1 0 0.1 0.05 0.038 0.085 0.108 0.140 0.203
0.15 0 0.1 0 0.094 0.177 0.232 0.418 0.711
0.15 0 0.1 0.05 0.112 0.297 0.446 0.759 0.958
0.2 0 0.1 0 0.174 0.497 0.707 0.943 0.998
0.2 0 0.1 0.05 0.236 0.643 0.855 0.993 1.000
0.1 0.05 0.1 0.05 0.040 0.054 0.048 0.054 0.061
0.15 0.05 0.1 0 0.050 0.075 0.083 0.123 0.209
0.15 0.05 0.1 0.05 0.069 0.129 0.201 0.387 0.653
0.2 0.05 0.1 0 0.119 0.240 0.384 0.693 0.928
0.2 0.05 0.1 0.05 0.143 0.407 0.618 0.878 0.995

whether this variation is due to differences in the speciation or in

the extinction rates.

Results
SIMULATION STUDY

The first set of simulations showed that, overall, the LRT testing

for different diversification rates between two categories of clades

had satisfactory statistical properties (Table 1). The type I error

rate (rejection rate when the null hypothesis is true, i.e., λ1 = λ2

and μ1 = μ2) was, as expected, close to 5% (first and seventh

lines in Table 1). However, when λ − μ was the same in both

categories, the rejection rate was greater than 5% (eighth line

in Table 1) showing that the present test does not test for equal

diversification rate. In the cases where the null hypothesis was

not true, the rejection rate varied as expected: it was greater for

larger sample sizes (n1) and for larger contrast in the speciation

or extinction rate. Interestingly, if one category of clades had

smaller μ while λ was the same, then the test was able to detect

this difference; however, the statistical power was less when the

same contrast in diversification was due to different λ (compare

the second and third lines in Table 1).

In the second set of simulations, the test for temporal varia-

tion rejected the null hypothesis more than 90% when μ = 0 and

λ varied, either it was an increase or a decrease (third to sixth lines

in Table 2). On the other hand, the results were contrasted when

μ > 0. When there was no temporal variation in the parameters,

the type I error rates were inflated in relation to the value of μ

(seventh and eighth lines in Table 2). When μ varied through time,

the test behaved very differently depending on the direction of this

variation: it did not reject the null hypothesis in most cases when

μ increased (ninth line in Table 2), whereas it rejected it in 68%

of the cases when μ decreased (tenth line in Table 2). To further
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Table 2. Rejection rate for the test of temporal variation in di-

versification.

Ancient Recent

λ μ λ μ Rejection Rate

0.01 0 0.01 0 0.029
0.1 0 0.1 0 0.038
0.1 0 0.05 0 0.917
0.1 0 0.01 0 1.000
0.05 0 0.1 0 0.923
0.01 0 0.1 0 1.000
0.1 0.025 0.1 0.025 0.105
0.1 0.05 0.1 0.05 0.248
0.1 0.025 0.1 0.075 0.057
0.1 0.075 0.1 0.025 0.682

The null model was a Yule model with constant rate, and the alternative

model was a Yule model with λ allowed to take different values before

and after 30 time units. The first two pairs of columns give the parameter

values used for the simulations (ancient and recent: values before and after

30 time units).

Table 3. Same than in Table 2 but the null model was a birth–

death model with constant rates, and the alternative model was

a model with λ constant and μ allowed to take different values

before and after 30 time units.

Ancient Recent

λ μ λ μ Rejection Rate

0.1 0.05 0.1 0.05 0.019
0.1 0.075 0.1 0.025 0.080
0.1 0.025 0.1 0.075 0.121
0.1 0 0.1 0.08 0.313
0.1 0.08 0.1 0 0.211

investigate this point, we repeated some of these simulations, but

this time the null model was a birth–death model with λ and μ

constant through time, and the alternative model was with λ con-

stant and μ allowed to vary before and after 30 time units. In this

situation, the test behaved as expected: the rejection rate was less

than 5% when μ was constant, whereas it varied between 8% and

31% when the null hypothesis was false (Table 3). It is noteworthy

that the present test to detect time-dependent extinction rate is not

very powerful: it was necessary to simulate a strong contrast in μ

to reach a statistical power greater than 0.2.

The third set of simulations showed that the mixture-based

LRT was able to detect heterogeneous diversification among two

unknown categories of clades (Table 4). The test was more power-

ful when the contrast was due to different λ compared to different

μ. Otherwise, the test showed satisfactory statistical performance:

Table 4. Rejection rate for the test of equality of diversifica-

tion rate between two unknown categories using mixtures with

n clades in each category.

n

λ μ 10 20 50

0.1 0 0.011 0.006 0.011
(0.1, 0.2) 0 0.235 0.548 0.929
0.2 (0, 0.1) 0.057 0.143 0.369
0.2 (0, 0.15) 0.199 0.423 0.829

Table 5. Results of fitting models to the fish data using mixtures

of Yule processes with K from two to seven.

Orders Families

K ln L AIC ln L AIC

2 −171.207 348.414 −599.846 1205.691
3 −158.381 326.763 −599.846 1209.691
4 −171.207 356.414 −599.846 1213.691
5 −171.207 360.414 −599.846 1217.691
6 −171.207 364.414 −599.846 1221.691
7 −171.207 368.414 −599.846 1225.691

its power increased with sample size and/or contrast in the param-

eters.

The distribution of the estimates of speciation rate under the

Yule model, λ̂Yule, shows that this estimator appeared unbiased

when μ = 0 (Fig. 1A). On the other hand, when μ > 0, it was

negatively biased although it can be observed that λ̂Yule > λ − μ

so this cannot be actually taken as an estimator of the net di-

versification rate. The estimator based on the birth–death model,

λ̂BD, appears less biased, even though the presence of extinctions

seems to induce a slightly more dispersed distribution of the es-

timates (Fig. 1B). The estimates of extinction rate based on the

birth–death model, μ̂BD, were almost unbiased (Fig. 1C).

APPLICATION TO FISH DATA

The fit of the Yule model to the fish data at the higher level

(N = 22) resulted in a global estimate λ̂Yule = 0.058 (SE = 0.002;

AIC = 456). We tried to fit a birth–death model which led to a

much improved fit (AIC = 376); however, the likelihood function

had a pronounced ridge on the line λ = μ (not shown). The fit

of mixtures of Yule models with increasing number of categories

(K ) showed that the best fit was with three categories (Table 5).

The parameter estimates were λ̂1 = 0.041, λ̂2 = 0.080, λ̂3 =
0.013, f̂1 = 0.65, and f̂2 = 0.10. The analysis of the combined

taxonomic and phylogenetic data (Paradis 2003) gave λ̂ = 0.056

and μ̂ = 1.83 × 10−7.
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Figure 1. Distribution of the estimates of λ and μ with (A) the Yule model (λ̂Yule) and (B and C) the birth–death model (λ̂BD and μ̂BD)

under five sets of parameters (values are given in the strips). Note the different scales of the x-axes. The vertical dotted lines indicate

the values of λ (A and B) or μ (C) used in the simulation (not visible if outside the range of the x-axis). In all cases, n = 100 clades.

The analysis at the level of the families (N = 97) gave for

the Yule model, λ̂Yule = 0.0756 (SE = 0.0016; AIC = 1483).

Like above, the fit of the birth–death model resulted in a like-

lihood surface with a ridge on the line λ = μ. The mixture of

Yule models with the best fit had two categories (Table 5); the

parameter estimates were as follows: λ̂1 = 0.099, λ̂2 = 0.036,

f̂ = 0.42.

The analysis with a model assuming continuous variation in

λ across clades gave close results for both taxonomic levels. In

both cases, the model fitted well and the AIC values were smaller

than for any of the previous models (Table 6). Figure 2 shows the

Table 6. Results of fitting a model of continuous variation in

speciation rate across orders (N = 22) and families (N = 97) of fish.

AIC μ̂λ (SE) σ̂λ (SE)

Orders 320.396 1.221 (0.039) 0.163 (0.032)
Families 1137.066 1.086 (0.026) 0.224 (0.022)

distribution of λ inferred with the estimated parameters. Trying

to introduce μ did not result in successful fits and the estimates

of this parameter were close to zero.
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Figure 2. Inferred distribution of speciation rate among orders

and families of fish.

Vega and Wiens (2012) reported the percentage of marine

and freshwater species at both taxonomic levels. This was dis-

tributed very asymmetrically with most orders and families hav-

ing only marine or freshwater species. Thus, we split the data

into two groups whether they had more or less than 50% of ma-

rine species. A test of different speciation rates between these

groups was performed. For orders, the difference was significant

(LRT: χ2
1 = 28.09, P < 0.001) with a larger estimate for ma-

rine orders (λ̂ = 0.063, SE = 0.002) compared to the freshwater

ones (λ̂ = 0.046, SE = 0.002). An examination of the data sug-

gested that this result was dependent on Percomorpha, which is

one of the youngest clades in this dataset and includes 16,625

species (Fig. 3A). Removing this clade resulted in a nonsignifi-

cant test (χ2
1 = 2.10, P = 0.147, N = 21). For families, an anal-

ogous result was found with a significant test (LRT: χ2
1 = 5.58,

P = 0.018) comparing marine families (λ̂ = 0.079, SE = 0.002)

and freshwater ones (λ̂ = 0.071, SE = 0.002). This result was

dependent on two families older than 200 million years (Fig. 3B):

the Amiidae (one species) and Polypteridae (12). Removing these

two families led to a nonsignificant test: χ2
1 = 2.02, P = 0.155

(N = 95).

Discussion
The analysis of phylogenetic diversification with molecular data

is enjoying a remarkable success in the literature. Some spectac-

ular results have been accomplished using complete phylogenies

(e.g., Goldberg et al. 2010; Hugall and Stuart-Fox 2012; Penney

et al. 2012). Although complete phylogenies, possibly supple-

mented with fossil data, are probably the best way to investigate

evolutionary diversification, the goal of our study was to show the

merit of an alternative approach based on the analysis of clade

data.

Our modeling approach is based on the assumption that each

clade is characterized by its diversification parameters and varia-

tion among these parameters can be quantified in a statistical way.

Bokma (2003) and Paradis (2003) developed a method to combine

information from high-level phylogenies with clade data: both

authors considered the simple constant-rate birth–death model.

Alfaro et al. (2009) used similar combined data to assess varia-

tion among clades of vertebrates using a stepwise procedure (see

details in Paradis 2012a). Thus, the approach in the present article

complements previous methodological developments. The possi-

bility to quantify variation among clades with linear models seems
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Figure 3. Number of species with respect to stem clade age for (A) orders and some superorders and (B) families of fish.
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a fruitful way to avoid overparameterization. Future applications

will reinforce the relative merits of this approach.

Recently, Stadler and Bokma (2013) developed alternative

likelihood functions with respect to the way higher taxa are de-

fined. They showed that the estimation of speciation and extinc-

tion rates vary substantially depending on these definitions. Al-

though they considered only the constant-rate birth–death model,

it seems possible and interesting to include their sampling scheme

into the developments presented in the present article.

Our modeling approach ignores the background phylogeny of

the clades, the set of branches that link the clades together to make

a higher-level phylogeny. There are two reasons for this. First,

using information from the background phylogeny is straightfor-

ward when the rates of speciation and extinction are constant and

homogenous, but when this assumption is relaxed, it is not simple

how one assumes changes in rates in the background tree. It is

clear that if a well-supported background phylogeny is available,

this might give additional information that can be combined with

clade data (e.g., Paradis 2003). However, this extra information

will in most cases require its own model because it relates to older

diversification events compared to clade data. On the other hand,

ignoring backbone phylogeny and assuming that the clades are

independent units simplifies the definition of alternative models

as done in this article. Second, although some higher-level phylo-

genies are available (mammals, birds), we believe these are still

exceptions rather than the rule. For instance, the basal relation-

ships of reptiles, amphibians, or fishes are still debated. Therefore,

having the possibility to analyze their clade data without the need

of a background phylogeny is of some general application. Fur-

thermore, the present approach can be used when analyzing sets

of clades across different phyla, for instance arthropods, echino-

derms, vertebrates, etc., where the background phylogeny would

not be very informative because this would branch at the origin

of metazoa.

The use of mixtures as an approach to analyze heterogeneity

in diversification rates is not limited to clade data. For instance,

one could model speciation and extinction rates on a fully re-

solved phylogeny assuming that these parameters vary among its

branches, though we do not know a priori which sections of the

tree evolved fast and which others evolved slowly. Furthermore,

the mixture approach can also be used to model variation in rates

of trait evolution along a phylogeny. In that case, the variation

may be among branches (as in the previous example), or among

traits where some traits are assumed to evolve faster but we do

not know which ones.

Some subtle but important facts come from the results of

the simulation study. Even though most of the tests considered

here assumed μ = 0, they appeared not to be tests of equal di-

versification. If the net diversification rates (λ − μ) were equal

among clades, the tests rejected the null hypothesis in more than

5% (see eighth row of Table 1). On the other hand, if λ was equal

among clades, the tests detected differences in μ. It is clear that

results based only on the Yule model must be interpreted with

caution.

The tests of temporal variation showed some contrasted but

interesting results. When the extinction rate was zero, these tests

performed very well and were able to detect either a decrease or

an increase in speciation rate. However, when extinction rate was

not null, the tests based on the Yule model showed poor perfor-

mance with an increased type I error rate and a high type II error

rate (frequency of accepting the null hypothesis when it is false)

when μ decreased through time. These poor performances were

corrected if the assumption μ = 0 was relaxed (i.e., if a null birth–

death model was used in place of the Yule one), although the test

had low power. Some of these results make sense: the increased

type I error rate obtained with the Yule model is clearly due to

the fact that a pattern of accelerated speciation can be created

under a diversification process with extinction, when old lineages

are mostly extinct (e.g., Paradis 2011). On the other hand, the

high type II error rate of the same model when extinction rate

increased through time is somehow surprising considering the

widely reported results of slowing down diversification (Rabosky

and Lovette 2008a,b; Morlon et al. 2011; Etienne and Rosindell

2012, among others). Obviously, the same test was not used in

these studies, so this clearly requires further investigation. Be-

sides, the result that the test based on a birth–death model shows

statistically consistent results (i.e., the null hypothesis was re-

jected in less than 5% when μ was constant and in more than

5% when this parameter varied through time) is encouraging and

will also be further investigated. Interestingly, this test was more

powerful when the extinction rate increased through time.

A particularly interesting result comes from the precision

of the estimator of extinction rate, μ̂BD, which appears to have

a very small bias, even when the data were simulated with a

relatively large value of μ. This contrasts with previous studies

showing that the estimator of extinction rate based on complete

phylogenies is, overall, inaccurate except if it is small compared

to the speciation rate (Paradis 2004; Didier et al. 2012). This

result is important because several authors have cast doubt on

the possibility to estimate with some precision extinction rates

without fossils (Aldous et al. 2011; Paradis 2011).

The analysis with the fish data were essentially illustrative,

but the results call for several comments. The present method

seems successful in quantifying variation in diversification rates

from a sample of clades. The difference in the results from both

taxonomic levels makes sense because we expect more variation

among families than among orders. The AIC values evidence

that the model assuming continuous variation in λ across clades

fits better than a model with discrete variation in this parameter.

Because similar tests have not been done with other data, this
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clearly calls for further analyses before concluding whether di-

versification varies continuously or discretely across clades.

The apparent failure to estimate the extinction rate, μ, of

fishes is disappointing because our simulation study showed that

this parameter can be estimated correctly with the present ap-

proach. The fossil record shows many episodes of radiations,

extinctions, and turnover during the evolutionary history of fishes

(Friedman and Sallan 2012). So, the reality is very different from

the homogeneous scenario used in our simulations. Our results

combined with previous studies (e.g., Aldous et al. 2011) sug-

gest that the estimators of μ are far more complex when rate

heterogeneity is present which is likely the case with most real

dataset.

Vega and Wiens (2012) addressed the paradox of equivalent

species diversity between marine and freshwater fishes despite the

fact that freshwater environments occupy a considerably smaller

fraction of the Earth’s surface than oceans. In particular, they won-

dered whether this could be related to differences in diversification

rates. Our results are in agreement with these authors’ who tested

their hypothesis by correlating the proportion of marine species

in a clade with the method-of-moment estimator from Magallón

and Sanderson (2001). We found significant differences in λ be-

tween marine and freshwater clades from the raw data; however,

the small difference in λ̂ between both groups suggested the in-

fluence of one or two clades. Hopefully, the analysis of a more

comprehensive dataset with the statistical tools introduced in this

article will help to solve the paradox of less biological diversity

in the ocean (Mora et al. 2011).
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