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The hierarchical branching nature of river networks can have a strong influence 
on the assembly of freshwater communities. This unique structure has spurred the 
development of the network position hypothesis (NPH), which states that the 
strength of different assembly processes depends on the community position in  
the river network. Specifically, it predicts that 1) headwater communities should be 
exclusively controlled by the local environment given that they are more isolated 
and environmentally heterogeneous relative to downstream reaches. In contrast, 
2) downstream communities should be regulated by both environmental and dispersal 
processes due to increased connectivity given their central position in the riverscape. 
Although intuitive, the NPH has only been evaluated on a few catchments and it is 
not yet clear whether its predictions are generalizable. To fill this gap, we tested the 
NPH on river dwelling fishes using an extensive dataset from 28 French catchments. 
Stream and climatic variables were assembled to characterize environmental conditions 
and graph theory was applied on river networks to create spatial variables. We tested 
both predictions using variation partitioning analyses separately for headwater and 
downstream sites in each catchment. Only 10 catchments supported both predictions, 
11 failed to support at least one of them, while in 7 the NPH was partially supported 
given that spatial variables were also significant for headwater communities. We 
then assembled a dataset at the catchment scale (e.g. topography, environmental 
heterogeneity, network connectivity) and applied a classification tree analysis (CTA) to 
determine which regional property could explain these results. The CTA showed that the 
NPH was not supported in catchments with high heterogeneity in connectivity among 
sites. In more homogeneously connected catchments, the NPH was only supported 
when headwaters were more environmentally heterogeneous than downstream sites. 
We conclude that the NPH is context dependent even for taxa dispersing exclusively 
within streams.
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Introduction

The establishment of metacommunity theory (Leibold et al. 
2004) revolutionized our understanding of community 
assembly (Cottenie 2005, Logue  et  al. 2011, Heino  et  al. 
2015). While ecologists have been aware of dispersal-driven 
ecological processes since the seminal work of MacArthur 
and Wilson (1963), it was long assumed that the local envi-
ronment was the primary factor selecting which species 
could persist in any given community. However, it is now 
increasingly acknowledged that community composition is 
also substantially influenced by the dispersal of organisms 
across habitat patches (Cottenie et al. 2003). When coloniza-
tion rates exceed extinction rates, species are able to occupy 
all habitat patches in which the environment is tolerable 
for them (i.e. species sorting; Chase and Leibold 2003). In 
contrast, when colonization rates are non-existent or low 
(i.e. dispersal limitation) species may be absent from other-
wise environmentally suitable habitats (Leibold et al. 2004), 
and when colonization rates are very high (i.e. mass effects), 
species can temporarily occupy habitat patches that are not 
suitable for them (Pulliam 1988).

More recently, ecologists have focused on determining 
how ecological factors such as ecosystem type, taxonomic 
group, natural disturbance and landscape connectivity influ-
ence the relative importance of environmental and dispersal 
factors on metacommunities (Cottenie 2005, Henriques-
Silva et al. 2013, Fernandes et al. 2014). Particular attention 
has been given to landscape connectivity in river networks 
because of their dendritic nature that creates preferential (or 
obligatory, considering strictly aquatic taxa) connections 
between habitat patches (Fagan 2002, Brown and Swan 2010, 
Altermatt et al. 2013, Zhao et al. 2017, Schmera et al. 2018). 
Hence, the spatial positioning of habitats within a stream 
network can play a crucial role in determining how commu-
nities are structured by dispersal and environmental filtering 
processes (Altermatt et al. 2013). Based on previous studies, 
Brown and Swan (2010) developed two predictions about 
community assemblages in river networks that were recently 
formalized into the network position hypothesis (NPH) by 
Schmera et al. (2018). The NPH first predicts that 1) com-
munities in headwater reaches are exclusively regulated by 
environmental processes because they are relatively more iso-
lated and environmentally heterogeneous than downstream 
reaches (Brown and Swan 2010). Secondly, the NPH predicts 
that 2) community assemblages in downstream reaches are 
increasingly influenced by mass effects due to a surplus of dis-
persal because of their central position in the river network. 
Hence, both environmental conditions and dispersal should 
account for compositional variation in downstream commu-
nities (Brown and Swan 2010). While the NPH has been 
highly influential in river ecology, few studies have tested its 
predictions explicitly and those that have were rather incon-
clusive (Tonkin et al. 2016, Erős et al. 2017, Göthe et al. 2017, 
Schmera et al. 2018). Examples of inconsistencies include a 
lack of support for the NPH predictions across taxonomic 

groups (Schmera  et  al. 2018), and the relative importance 
of environmental and dispersal processes being dependent 
on the systems being studied rather than network position 
(Datry  et  al. 2016a, b, Tonkin et  al. 2016). With previous 
findings in mind, an opportunity exists to determine whether 
the NPH predictions are general (i.e. applicable across all 
river networks), or context-dependent (Schmera et al. 2018).

There are also several challenges to evaluating the NPH 
predictions, and their influences on community assembly 
in river metacommunities. First, the NPH is founded on 
the structure of river networks, meaning that it can only 
be validated on taxa that disperse mostly through river cor-
ridors. The assumption that headwater reaches are more 
isolated than those further downstream does not neces-
sarily hold for taxa that can disperse overland (e.g. aquatic 
insects that can fly in their adult stage) (Schmera et al. 2018). 
Second, the NPH explicitly invokes river network position 
in determining community assemblages, but the network 
itself has often been disregarded or not explicitly considered 
in previous studies. Most, if not all, studies evaluating the 
NPH used spatial eigenfunction analysis or watercourse and 
geographical distance to model spatial predictors in river 
networks. However, spatial eigenvectors are known to also 
represent unmeasured spatially-structured environmental 
factors (Smith and Lundholm 2010, Fernandes et al. 2014) 
and simple spatial distances may not be adequate to account 
for the complex structure of river networks (i.e. they do not 
account for variation in connectivity across sites). However, 
river networks are ideal systems to be represented by graphs 
– mathematical constructs representing nodes (points) con-
nected by a set of edges (links) (Urban and Keitt 2001) that 
can be used to estimate the complex connectivity patterns of 
riverine ecosystems (Erős et al. 2011, 2012). Third, studies 
evaluating the NPH predictions have not been sufficiently 
replicated; the majority of studies were based on a few catch-
ments (but see Göthe et al. 2017). There is a need to expand 
previous studies to evaluate the NPH across multiple river 
metacommunities, and expand our understanding on the 
applicability and generality of its predictions (Tonkin et al. 
2016, 2018). A large geographical region encompassing 
multiple, diverse, river networks is an exceptional venue to 
evaluate the NPH and to search for general processes that 
regulate community assembly in river networks.

In the present study we evaluate the NPH on an extensive 
dataset of riverine fish assemblages, containing thousands of 
sampling records in multiple French catchments. France’s het-
erogeneous climate and topography make it an excellent area 
to test the NPH, and to evaluate the processes that regulate 
community assembly in river networks. The objectives of our 
study were two-fold: first 1), to determine if the strength of 
environmental and dispersal processes varies between head-
water and downstream fish communities. For this goal, we 
applied graph theory instead of traditional methods to account 
for the river network configuration in the spatial variables. 
Second 2), to verify whether catchment characteristics may 
explain the variation in the importance of environmental 
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and dispersal processes across river networks. For instance, 
environmental heterogeneity (Heino  et  al. 2012), topo-
graphic heterogeneity (Tonkin et al. 2017), climate (e.g. arid 
vs humid) (Datry et al. 2016a) as well as variation in river 
network configuration among drainage basins (i.e. spatial 
arrangement of sites within the river network; Tonkin et al. 
2017, 2018) may influence the effects of environmental and 
dispersal processes in riverine metacommunities.

Methods

Catchment, river networks and fish community data

Catchments were delineated according to the pan-European 
catchment characterization and modelling (CCM2; Vogt et al.  
2007) database, and represented river networks in each of the 
respective catchments using the French digital river network 
(RHT; Pella et al. 2012) GIS database. The RHT was derived 
from a 50 m digital elevation model and is considered a 
hydrological reference in France (Pella et al. 2012). Drawing 
on these data we defined headwater reaches as Strahler orders 
1 and 2, and downstream reaches as those with Strahler order 
> 2. Downstream reaches were significantly more distant 
from the source (t = –24.8; p < 0.0001) and larger than 
headwater reaches both across (t = –17.702; p < 0.0001) and 
within catchments.

Fish community data was represented by species abun-
dances (i.e. number of individuals) and was obtained from 
national fishing surveys conducted by the French Biodiversity 
Agency (AFB) on French rivers (Poulet et al. 2011) between 
1995 and 2012. All fish sampling was carried out using elec-
trofishing both by wading smaller streams (85% of sampled 
areas) and using boat for higher order reaches. Given that the 
surface area of sampling operations varied across sites due to 
variation in river width, species abundances were converted 
to densities by dividing them by log-transformed sampling 
surface area. Most sites were sampled with one or two pass 
removal but, to homogenize the data, we only included 
individuals sampled in the first pass in our dataset. We also 
eliminated all sites sampled before May to avoid recruitment 
timing bias and excluded brackish and marine species (i.e. 
Alosa fallax, Atherina presbyter, Chelon labrosus, Liza aurata, 
Liza ramada, Mugil cephalus, Platichthys flesus and Pleuronectes 
platessa). Given that recently introduced and heavily stocked 
species may not be regulated by local environmental and dis-
persal processes, we identified those using Keith et al. (2011) 
and excluded them from the dataset (i.e. Ctenopharyngodon 
idella, Hypophthalmichthys molitrix, Neogobius melanostomus, 
Oncorhynchus mykiss, Pimephales promelas and Ponticola kes-
sleri). Moreover, some river reaches contained more than one 
sampling site (i.e. fish community). To reduce spatial bias, 
we performed spatial thinning and kept only one sampling 
site per reach. For each catchment, we chose the site that was 
sampled in (or near to) the year that represented the average 
sampling year across all sites in the catchment to avoid tem-
poral bias in our analyses. We included only the data from 

catchments that had at least 15 sampled sites in both head-
water and downstream reaches. Our final dataset included 
57 species sampled in 3353 sites across the 28 catchments 
(Fig. 1). Descriptive data for each catchment and each species 
are presented in the Supplementary material Appendix 1 
Table A1 and Table A2, respectively. The data treatment and 
statistical analyses described below were conducted with the 
R software (R Core Team). Note that the terms ‘catchment’ 
and ‘metacommunity’, and the terms ‘reach’ and ‘site’, are 
used interchangeably.

Environmental variables

For each reach, we included environmental variables [E] 
available from the RHT, and previously shown to be strongly 
related to stream fishes distributions (Oberdorff et al. 2001, 
Buisson et al. 2008), including: mean stream width (WID, 
m), elevation (ELEV, m), river slope (SLO, ‰), mean 
discharge (MD, m3 s–1) and river bed surface grain size 
(RBSGS; Snelder  et  al. 2011). We also extracted tempera-
ture and precipitation variables from SAFRAN (8 km grid-
data; Vidal  et  al. 2010) between the periods of 1990 and 
2015, which encompasses the total period of sampling of 
the fish dataset. We then used these data to compute bio-
climatic variables following the Worldclim methodology 
(Hijmans  et  al. 2005). For details on the computation of 
these variables and their units we refer to < www.worldclim.
org >. Descriptive statistics for all these variables computed 
at the site scale are presented in Supplementary material 
Appendix 1 Table A3. Prior to statistical analysis, we verified 
and reduced multicollinearity in environmental variables in 
each catchment by following Naimi et al. (2014). Variables 
with variance inflation factor larger than 10 were excluded 
using a stepwise procedure.

Spatial variables

The spatial variables [S] were selected in order to represent 
various aspects of river network configuration, and included: 
distance to the source (DIS, km), upstream drainage area 
(UDA, km2) and three network metrics. These first two 
variables were log-transformed and they both are typically 
used as proxies for the reach’s position in the upstream-
downstream longitudinal gradient (Oberdorff  et  al. 2001). 
We characterized the river network of each catchment as 
graphs using the network analysis extension in ArcGIS soft-
ware ver. 10.3 (ESRI 2014), in which sampling sites were 
defined as nodes and the stream corridors connecting them 
as edges (Erős  et  al. 2012). For simplicity, we developed 
undirected graphs because fishes may disperse either through 
passive downstream drift or active upstream swimming 
depending on their life stages (Olden et al. 2001). The edges 
connecting nodes were weighted using the following func-
tion: wij = 1 – (dij/dMAX)3, where dij is the watercourse distance 
between site i and j and dMAX is the maximum distance found 
between any two nodes in the catchment. The weights were 
used to represent the ease of dispersal among sites and the 
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exponent decrease the importance of sites that are very dis-
tant from each other (Borcard et al. 2011, Zhao et al. 2017). 
Hence, these weighted graphs provided information on both 
watercourse distance and variation in connectivity among 
sites. We then computed three node metrics for each catch-
ment’s graph: degree (DE), the number of nodes connected 
to the focal node; betweenness centrality (BC), the number 
of shortest path from all nodes that pass through the focal 
node; and closeness centrality (CC), the inverse of the sum of 
the shortest distance between the focal node and every other 
node in the network (Rayfield et al. 2011). We normalized all 
metrics by the total number of sites (i.e. nodes) in the catch-
ment. Ecologically, sites with high values for these network 
metrics are generally located in central positions in the land-
scape, and thus are critical for dispersal pathways across 
the river network (Erős  et  al. 2011, Rayfield  et  al. 2011). 
Formulas and examples of these metrics are presented in the 
Supplementary material Appendix 2 Fig. 1A, 2A, 3A.

Statistical analysis

To estimate the amount of variation explained by environ-
mental and spatial variables for each catchment we applied 
variation partitioning analysis (VPA; Borcard  et  al. 1992). 

This method uses a community (sites-by-species) matrix as 
the response variable and sites-by-environmental variables 
[E] and sites-by-spatial variables [S] as explanatory pre-
dictors. To create the community matrix [Y], we applied 
Hellinger-transformation on fish densities as recommended 
by Legendre and Gallagher (2001) for zero-inflated data in 
ordination analysis. Then, all environmental variables [E] 
were tested independently on [Y] in global models using 
redundancy analysis (RDA). When these global models 
were significant, a forward selection procedure was applied 
on the environmental matrix (Blanchet  et  al. 2008). Note 
that forward selection was not used for the spatial model 
[S] with network metrics due to the small number of pre-
dictors (Peres-Neto and Cumming 2010). We then applied 
a RDA-based VPA, which decomposes additively the total 
variation in the response data into four variance fractions: 
environment variation independent of spatial variation [E], 
spatially-structured environmental variation [E + S], spatial 
variation independent of environmental variation [S], and 
residual variation [R]. To estimate these fractions we used 
the adjusted redundancy statistic (R2

adj), which controls for 
the number of predictors and sample size (Peres-Neto et al. 
2006), thus allowing comparisons across metacommunities. 
Finally, we ran permutation tests (n = 1000) on partial RDAs 

Figure 1. Map of France with selected catchments used in the analysis. The coloring pattern shows whether we found support (Su, pale 
green), partial support (PSu, orange) or no support (NSu, red) for the NPH predictions in the catchment under the VPNETWORK framework. 
The numbers in the legend refers to the number of catchments that were assigned each of these classifications. Refer to the Methods section 
to understand how these three classifications were assigned. The numbers inside the catchments represent their codes (see tables in 
Supplementary material Appendix 1–9 for catchment names/codes correspondences).
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to estimate the significance (p < 0.05) of [E] and [S]. We 
also ran partial RDAs with both environmental and spatial 
variables as predictors and site sampling year as a covariable 
to determine whether the effect of these variables was robust 
to compositional change over time.

In order to contrast our graph-based approach to the 
traditional methods used in stream metacommunity ecology, 
we also performed two additional analyses. First, we tested 
the NPH with a VPA using spatial eigenfunction analysis to 
model spatial processes (Landeiro et al. 2011, Schmera et al. 
2018). We applied principal coordinate of neighboring matri-
ces (PCNM; Griffith and Peres-Neto 2006) on watercourse 
distances, an undirected method that is recommended for 
constrained ordination (Dray et al. 2006). Second, we tested 
the NPH by evaluating the relationship between community 
dissimilarity with environmental and water course distance 
among sites (Brown and Swan 2010, Jamoneau et al. 2018) 
using Mantel and partial Mantel tests with 999 permutations 
(Smouse  et  al. 1986). A more detailed description of both 
analyses is provided in the Supplementary material Appendix 
3 and 4. From here we refer to the VPA using river network 
configuration metrics as VPNETWORK and VPA using spatial 
eigenfunction analysis as VPPCNM. No acronym was used for 
Mantel tests.

Similar to previous studies evaluating the NPH (Brown 
and Swan 2010, Schmera  et  al. 2018), we interpreted the 
output of the two VPAs and two Mantel tests in relation to 
the NPH predictions as: the NPH was supported (Su) when 
[E] was statistically significant in both headwater and down-
stream reaches, and when [S] was only statistically significant 
for downstream reaches; the NPH was not supported (NSu) 
if [E] was not statistically significant in either headwater or 
downstream sites, or if [S] was not statistically significant in 
downstream reaches (Table 1). Finally, the assumption that 
only environmental factors are important in structuring com-
munities within headwater reaches has yet to be rigorously 
tested (Schmera et al. 2018). For instance, headwater com-
munities may be so isolated that dispersal limitation may 
increase the importance of stochasticity and non-equilibrium 
dynamics (Erős 2017) and, consequently, the signal of spatial 
processes (Heino et al. 2015, Göthe et al. 2017). In this case, 
species sorting would cease to be the exclusive structuring 
process in these communities. With this in mind, we explored 
an additional test whereby the NPH was partially supported 

(PSu) when both [E] and [S] were statistically significant for 
both headwater and downstream sites (Table 1).

Regional variables and analysis

To determine whether regional properties influence the 
support for the NPH , we assembled a catchment-scale 
dataset including number of sites, geographical coordinates, 
indices of topographic and environmental heterogeneity, and 
regional-scale network metrics (Table 2).

To account for differences in sample sizes (Sály and Erős 
2016), we included the total number of sites (total_SITES) 
as well as the total number of headwaters (total_HEADW) 
and downstream sites (total_RIVER) from each catchment. 
We also included catchment surface (SA) area as the rela-
tive importance of assembly processes may vary with spatial 
extent (Heino et al. 2015) and we computed their latitude 
(LAT) and longitude (LONG) as the average latitude and 
longitude of their constituent sites, respectively.

Topographic heterogeneity was measured in two ways: 
coefficient of variation in altitude (cv_ALT) and slopes 
(cv_SLO) across reaches in each catchment. Higher values 
for these indices suggest a more heterogeneous topography. 
Environmental heterogeneity (EH) was calculated following 
Henriques-Silva  et  al. (2013) as the average environmental 
Euclidean distance among sites within each catchment. We 
included bioclimatic variables describing annual mean, sea-
sonality and extreme values of temperature and precipita-
tion (i.e. BIO1, BIO2, BIO3, BIO4, BIO5, BIO6, BIO7, 
BIO12, BIO13, BIO14, BIO15; Supplementary material 
Appendix 1 Table A3), elevation and all stream variables. 
All variables were standardized and we computed two indi-
ces for each catchment: total environmental heterogeneity 
(total_EH), which was computed using all sites, and relative 
environmental heterogeneity (relative_EH), which was com-
puted as the ratio between the EH of headwaters to the EH 
of downstream reaches (i.e. in this case EH was computed 
for headwater and downstream sites separately). The first 
index can be interpreted as the ‘length’ of the environmental 
gradient, where larger values indicate larger EH. The second 
can be interpreted as such: values near 1 suggest that headwa-
ter and downstream sites have similar EH, values > 1 indicate 
that headwaters are more heterogeneous than mainstems and 
values below 1 suggest the opposite.

Table 1. Evaluation of the network position hypothesis (NPH) based on the statistical significance (α = 0.05) of pure environmental [E] and 
pure spatial [S] fractions in the variation partitioning analyses performed on headwater and downstream sites. p = p-value. The NPH is not 
supported in either of the cases described in the three last rows of the table. The symbol ‘–’ indicates that the p-value for this fraction does 
not matter due to a crucial condition not being met for another fraction.

[E] [S]

NPHHeadwater Downstream Headwater Downstream

p ≤ 0.05 p ≤ 0.05 p > 0.05 p ≤ 0.05 Supported (Su)
p ≤ 0.05 p ≤ 0.05 p ≤ 0.05 p ≤ 0.05 Partially supported (PSu)
p > 0.05 – – – Not supported (NSu)
– p > 0.05 – – Not supported (NSu)
– – – p > 0.05 Not supported (NSu)
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Finally, we described river network topology by upscaling 
the three node metrics described previously (i.e. DE, CC 
and BC) to the entire network (i.e. catchment) using the 
centralization method established by Freeman (1979). The 
centralization of node properties represents the variation in 
these node properties across the network. In other words, 
it measures the extent to which the connectivity of a graph 
is organized around particular focal nodes (Freeman 1979). 
These values vary from 0 to 1, in which a 1 represents a 
star-shaped graph (i.e. all nodes are connected to one cen-
tral node; Supplementary material Appendix 2 Fig. A4a) 
and 0 a complete graph (i.e. every pair of node is connected 
through a unique edge; Supplementary material Appendix 
2 Fig. A4b). Thus, high values on one of these metrics sug-
gest that the stream metacommunity is composed of many 
peripheral communities connected to only a few central 
communities.

We used a classification tree analysis (CTA) to determine 
whether, and how, regional variables influence the support 
of the NPH predictions. CTA is a flexible and robust pre-
dictive modeling approach, allowing the use of different 
types of explanatory variables. The CTA also deals with non-
linear relationships and high-order interactions (De’ath and 
Fabricius 2000). CTA is nonparametric, and thus collinearity 
does not prevent reliable parameter estimation (Cutler et al. 
2007). Given the small number of observations (i.e. 28 catch-
ments), splits were allowed as long as resulting leaves had a 
minimum of 5 observations. The tree was evaluated with a 
10-fold cross-validation procedure and we pruned the tree by 
selecting the split with the least cross-validated error to avoid 
overfitting the data. The response variable was the support 
for the NPH (i.e. Su, PSu, NSu) whereas all regional variables 
described previously (Table 2) were used as predictors. The 
percent variation (R2) explained by the CTA was calculated 
as follows: R2 = 1 – relative error (Sharma et al. 2012). Given 
that we were able to validate the NPH in a much larger num-
ber of catchments using our graph-based method (see results 
below), we limited the regional analysis only to the NPH 
classification obtained from the VPNETWORK.

We used the ‘igraph’ package (Csardi and Nepusz 
2006) to compute the network metrics, the ‘usdm’ package 
(Naimi et al. 2014) to compute the variance inflation factor, 
the ‘adespatial’ package (Dray  et  al. 2017) to perform the 
forward selection procedure and the ‘vegan’ package to create 
the PCNMs, and to perform the RDA, Mantel tests and VPAs 
(Oksanen et al. 2015). Finally, we used ‘rpart’ (Therneau et al. 
2015) and ‘rattle’ (Williams 2011) packages to conduct and 
plot the classification tree analysis, respectively.

Data deposition

Data available from the Dryad Digital Repository: < http://
dx.doi.org/10.5061/dryad.bp31rm7 > (Henriques-Silva et al. 
2018).

Results

We found that both [E] and [S] fractions obtained from 
the variation partition using river network configuration to 
model spatial connectivity (VPNETWORK) exhibited a large vari-
ability across catchments (Fig. 2). However, when we pooled 
the results from all catchments and compared headwater and 
downstream metacommunities, we did not find any statistical 
difference for either [E] (Wilcoxon test; W = 406, p = 0.82) 
or [S] (Wilcoxon test; W = 503; p = 0.07) while the differ-
ence in [E + S] was marginally significant (Wilcoxon test; 
W = 273, p = 0.051). VPNETWORK on headwater sites resulted 
in an average [E] of 0.131 ± 0.103, [S] of 0.031 ± 0.057, and 
[E + S] of 0.089 ± 0.088 (Supplementary material Appendix 5 
Table A4). The same analysis performed on downstream sites 
resulted in an average [E] of 0.133 ± 0.076, [S] of 0.044 ± 
0.038, and [E + S] of 0.169 ± 0.072 (Supplementary mate-
rial Appendix 5 Table A5). Variation partition using PCNM 
(VPPCNM) to model spatial connectivity on headwater sites 
resulted in average [E] of 0.082 ± 0.216, [S] of 0.014 ± 
0.142 and [E + S] of 0.140 ± 0.167 (Supplementary mate-
rial Appendix 5 Table A6). The same analysis performed 
on downstream sites resulted in an average [E] of 0.129 ± 
0.052, [S] of 0.051 ± 0.045 and [E + S] of 0.172 ± 0.107 
(Supplementary material Appendix 5 Table A7). Similarly 
to VPNETWORK, we found no statistical difference between 
headwater and downstream metacommunities for either [E] 
(Wilcoxon test; W = 488, p = 0.118), [S] (Wilcoxon test; 
W = 429, p = 0.552) or [E + S] (Wilcoxon test; W = 497, 
p = 0.086) fractions. We also found that Mantel and partial-
Mantel tests mirrored the results from the variation partition-
ing analysis, exhibiting large variability among catchments 
(Supplementary material Appendix 6 Table A10 and A11).

We found that VPNETWORK supported the NPH predic-
tions in 10 catchments when considering [E] and [S] (Fig. 1, 
Supplementary material Appendix 5 Table A8). Moreover, we 
observed that the NPH was partially supported in 7 catch-
ments, but not supported in the remaining 11 (Fig. 1). Partial 
RDAs with sampling year revealed that compositional change 
over time was only significantly important in 1 headwater 

Table 2. Regional catchment properties and indices computed for 
regional analysis.

Regional variable Description

total_SITES total number of sites sampled
total_HEADW total number of headwater sites sampled
total_RIVER total number of downstream sites sampled
LAT average latitude of constituent sites
LONG average longitude of constituent sites
SA log-transformed catchment surface area
cv_ELE coefficient of variation in sites’ elevation
cv_SLO coefficient of variation in sites’ slope
total_EH catchment environmental heterogeneity
relative_EH environmental heterogeneity of headwater 

relative to downstream sites
DE centralization-network degree
CC centralization-network closeness centrality
BC centralization-network betweenness centrality
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and 3 downstream metacommunities; adjusted-R2 varied 
between 0.01 and 0.02. There was no clear bias towards any 
NPH classification; sampling year affected one Su, one NSu, 
and two PSu catchments (Supplementary material Appendix 
7 Table A12, A13). Both VPPCNM and Mantel tests resulted in 
similarly mixed support of the NPH; VPPCNM with 3, 7 and 
18 catchments with full, partial or no support, respectively 
(Supplementary material Appendix 5 Table A9), Mantel tests 
with 6, 9 and 13 catchments with full, partial or no support, 
respectively (Supplementary material Appendix 6 Table A10) 
and partial-Mantel tests result with 5, 1 and 22 catchments 
with full, partial or no support, respectively (Supplementary 
material Appendix 6 Table A11).

Our CTA explained R2 = 64.7% of the variation in 
NPH support across catchments (Supplementary material 
Appendix 8 Table A14). The analysis resulted in a tree with 2 
splits and 3 terminal leaves (Fig. 3). The first split was based 
on regional closeness centrality (CC), in which catchments 
with values ≥ 0.14 were more likely to not support the NPH 
(82% of the cases; Fig. 3). Catchments with lower values 

of CC were further subdivided by relative_EH; catchments 
with values >1 were more likely to fully support (Su) the 
NPH predictions (78% of the cases), and catchments with 
relative_EH < 1 were more likely to partially support (PSu) 
the NPH predictions (75% of the catchments; Fig. 3).

Discussion

We evaluated the NPH and were the first to test the validity 
of this hypothesis for multiple fish metacommunities in river 
networks. We had three primary findings. First, we found a 
lack of general support for the NPH predictions regardless 
of the method considered. Second, when we accounted for 
the potential influence of dispersal processes through river 
configuration metrics, we found that the NPH was fully or 
partially supported in 36 and 25% catchments, respectively, 
while the support was weaker using the traditional meth-
ods (VPPCNM, Su = 10%, PSu = 25%; Mantel test, Su = 21%, 
PSu = 25%; partial Mantel test, Su = 21%, PSu = 3.5%). 

Figure 2. Boxplots depicting the adjusted R2 of the pure environ-
mental fraction [E], spatially-structured environmental fraction 
[E + S] and pure spatial fraction [S] obtained from the variation par-
titioning analysis performed on headwater and downstream sites 
across all 28 catchments using river network configuration metrics 
(VPNETWORK). The numbers below the boxplots represent the pro-
portion of catchments in which the fractions were statistically sig-
nificant (α = 0.05). The bottom and top boundary of the boxplots 
represent the 25 and 75% percentiles, respectively, while the line 
within them represents the median. Top and bottom whiskers out-
side the boxplots represent ± 1.5 times the distance between the 
first and third quartiles. Data beyond whiskers are outliers and plot-
ted as dots. The adjusted R2 values used in this figure are presented 
in Supplementary material Appendix 5 Table A8.

Figure 3. Results for classification trees analysis (CTA) on the pre-
dictions of the network position hypothesis (NPH). Splitting of 
each node was determined by a linear combination of variables 
where cases that meet the criteria at each junction are split off to the 
left. For instance, the first split in the tree indicate that all the 
observations going to the left have a CC ≥ 0.14 whereas the ones 
branching to the right have a CC < 0.14. The name of each node 
represents the most probable NPH classification. The three num-
bers below the name represent the probability of classification NSu, 
PSu and Su (from left to right) based on the splitting criteria. The 
last number (%) represents the proportion of observations in that 
node. For instance, the first terminal node (from left to right) shows 
that most of the observations are classified as NSu, the probability 
to be classified as NSu, PSu or Su is 82%, 0 and 18%, respectively, 
and it contains 39% of the total number of observations (i.e. 
catchments). CC = closeness centrality – centralization; relative_
EH = relative environmental heterogeneity; NSu = not supported 
(in red); PSu = partially supported (in orange); Su = supported (in 
light green). Refer to the Methods section to understand how these 
three classifications were assigned.
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Third, we demonstrated that the relative influence of network 
position on community assembly could depend on other 
characteristics such as regional environmental heterogeneity 
and river network connectivity. We expand on these three 
findings below.

While the NPH did not receive widespread support in 
our study, the classification tree analysis provided interest-
ing insight into the drivers of these different responses. For 
example, the majority of catchments with relatively higher 
centralization (i.e. regional) closeness centrality (CC) values 
did not support the NPH predictions. Higher regional CC 
suggests higher among-site variation in connectivity, meaning 
that dispersal pathways are constrained to go through a few 
sites in the river network (Rayfield et al. 2011), which in turn 
decreases the importance of spatial predictors across commu-
nities. Indeed, we found that most catchments that did not 
support the NPH predictions had non-significant spatial pre-
dictors for downstream reaches, while only three of them had 
non-significant environmental predictors in either headwater 
or downstream reaches. This suggests that the lack of support 
for NPH predictions was mostly due to non-significant effects 
of dispersal on downstream metacommunities rather than 
the lack of environmental sorting in headwaters. Ultimately, 
regional network connectivity is crucial for the effect of disper-
sal to be detected in downstream sites, and could explain why 
certain studies failed to find support for the NPH even for spe-
cies that use stream corridors to disperse (Schmera et al. 2018).

Furthermore, spatial connectivity explained a significant 
proportion of the community variation in 17 downstream 

metacommunities and, surprisingly, in 12 headwater meta-
communities. This may potentially explain why a quarter of 
the studied catchments were found to partially support the 
NPH predictions. Moreover, we found that spatial variables 
explained a higher proportion of the variation than environ-
mental variables in a few headwater metacommunities (e.g. 
Charente, Durance, Meuse; Fig. 1, Supplementary material 
Appendix 5 Table A8). Given the dendritic nature of river net-
works, headwater streams may be geographically close to one 
another, and consequently experience similar environmental 
conditions, but also be far from one another in watercourse 
distance (Fig. 4a). This could influence organisms like fishes 
that must disperse through the river network (Schmera et al. 
2018). In this case, spatial rather than environmental vari-
ables would explain the variation in community assemblages 
across headwater reaches (Fig. 4a). Our findings suggest that 
even though headwater reaches are more isolated than those 
further downstream, not all are equally isolated. Hence, the 
assumption that spatial isolation consequently leads to the 
dominance of species sorting processes (e.g. Fig. 4b) should 
be relaxed and potentially further explored. If the variation in 
isolation influences their community structure (e.g. Fig. 4a) 
then the signal of spatial processes may reflect dispersal limi-
tation in headwater communities (Thompson and Townsend 
2006, Göthe et al. 2017).

We also found that most catchments that were relatively 
more homogeneously connected (i.e. second split; Fig. 2) but 
exhibited EH_relative < 1 provided a partial support for the 
NPH. In these catchments, downstream reaches had more 

Figure 4. Theoretical example describing how dispersal and environmental factors may influence headwater communities (black circles). 
The colors in the black boxes represent different environmental conditions. Streams are represented by full and dashed lines. Dashed lines 
specifically describe the stream corridors along the river network that connect the headwater sites. (a) In the first example, communities 1 
and 2 have similar species composition and differ from both communities 3 and 4. The species composition of communities 3 and 4 are 
also different amongst themselves. The variation in species composition [Y] across the four headwater sites cannot be explained by their 
environmental conditions [E], which are similar for all sites given that they are geographically near to each other. Rather, how connected 
these sites are along the river network [S] should better explain the variation in community composition across these communities. (b) In 
the second example, communities 1 and 2 have similar species composition and differ from both communities 3 and 4. The species com-
position of communities 3 and 4 are also different amongst themselves. In this case the variation in environmental conditions [E] rather 
than connectivity [S] should better explain the differences found in their community compositions [Y]. The example (b) but not (a) follows 
the first NPH prediction, yet both are plausible. These interpretations hold only for taxa that disperse exclusively through stream 
corridors.
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heterogeneous environments than upstream reaches. Given 
that headwaters were less environmentally heterogeneous, 
spatial processes explained a significant proportion of the 
variation in their fish communities, potentially via dispersal 
limitation (e.g. Fig. 4a). While environmental heterogene-
ity is often greater in headwaters than further downstream 
(Clarke et al. 2008), it is not necessarily always the case and 
should not be assumed (Schmera et al. 2018). In contrast, we 
observed that the majority of catchments with relative_EH 
> 1 fully supported the NPH, suggesting that the environ-
mental heterogeneity in headwater sites should be sufficiently 
high for environmental filtering to be the exclusive assembly 
process in these communities (Heino  et  al. 2012). Hence, 
the results from the regional analysis highlight the impor-
tance of considering broad catchment properties into stream 
metacommunity studies (Sály et al. 2011), and could explain 
apparent context dependency in communities’ response to 
environmental and spatial processes (Tonkin  et  al. 2016, 
2018).

The two traditional methods, more commonly used in 
stream metacommunity evaluations, failed as well to provide 
general support for the NPH predictions. While it is not clear 
whether this finding is a result of issues with the NPH or with 
the methods themselves, recent studies have shown that spa-
tial distance alone may not be sufficient to assess the effect of 
dispersal processes in metacommunities. For example, explicit 
dispersal measures such as wind directionality (for freshwater 
zooplankton diapausing eggs; Horváth et al. 2016), oceanic 
currents (for marine polychaete larvae; Moritz  et  al. 2013) 
and landscape resistance within wetlands (for floodplain 
fishes; Fernandes  et  al. 2014) have revealed the effect of 
dispersal processes that would otherwise remain undetected 
by geographical distance or spatial eigenfunction predictors. 
Likewise, metrics that better represent the complex structure 
of dendritic networks should be used to detect dispersal pro-
cesses in riverine metacommunities, especially for organisms 
that disperse exclusively through river corridors (Erős et al. 
2011, Tonkin et al. 2018).

Our findings suggest that evaluating the NPH solely 
through the statistical significance of environmental and 
spatial variables across headwater and downstream sites is 
inadequate for characterizing the multiple processes that act 
jointly in stream metacommunities. Perhaps a more nuanced 
and appropriate approach would be to evaluate relative 
effect sizes (Stephens  et  al. 2007); i.e. the change in rela-
tive importance of environmental and spatial processes with 
respect to site network position. For instance, the ratio of 
spatial compared to environmental variables should increase 
from headwaters to downstream (e.g. headwaters [S]/[E]  
< downstream [S]/[E]). However, using our data, applying 
that approach would still result in only 17 of the 28 catch-
ments supporting the NPH predictions (Supplementary 
material Appendix 9 Table A15). Nevertheless, interpreting 
these results remains challenging because methodologists have 
yet to develop tools that will allow to distinguish unequivo-
cally the effect of dispersal limitation from mass-effects in 

[S] on non-experimental research frameworks. Ultimately 
though, improving our ability to generalize in stream meta-
community theories will require additional investigations, 
and consideration and evaluation of different facets of biodi-
versity (Heino et al. 2013, Blanchet et al. 2014, Cilleros et al. 
2016, Villéger et al. 2017) in relation to spatial configuration 
and environmental heterogeneity of river networks.

In conclusion, our evaluation of the NPH with multiple 
metacommunities did not provide widespread support for this 
hypothesis, regardless of the methodology used. Even within 
a taxonomic group that disperses exclusively through stream 
corridors, the patterns found across the studied metacommu-
nities were diverse. We also demonstrate that the influence of 
the site network position on community assembly processes 
may depend on broader characteristics of the river network 
such as regional environmental heterogeneity and connec-
tivity. Thus, these regional catchment properties should be 
taken into account when establishing sampling protocols to 
test general metacommunity theory in river networks (Sály 
and Erős 2016, Tonkin et al. 2018), or apply its principles to 
stream conservation or restoration (Swan and Brown 2017).
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